Feed Forward Neural Network For Sine Function With Symmetric Table Addition Method Using Labview And Matlab Code

نویسنده

  • Fadhil A. Ali
چکیده

This work is proposed the feed forward neural network with symmetric table addition method to design the neuron synapses algorithm of the sine function approximations, and according to the Taylor series expansion. Matlab code and LabVIEW are used to build and create the neural network, which has been designed and trained database set to improve its performance, and gets the best a global convergence with small value of MSE errors and 97.22% accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks

Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

Numerical treatment for nonlinear steady flow of a third grade‎ fluid in a porous half space by neural networks optimized

In this paper‎, ‎steady flow of a third-grade fluid in a porous half‎ space has been considered‎. ‎This problem is a nonlinear two-point‎ boundary value problem (BVP) on semi-infinite interval‎. ‎The‎ solution for this problem is given by a numerical method based on the feed-forward artificial‎ neural network model using radial basis activation functions trained with an interior point method‎. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014